TIN
Z Varhoo
(Rozdíly mezi verzemi)
(→Rekurzivně spočetný jazyk) |
(→Regulární jazyky) |
||
| Řádka 20: | Řádka 20: | ||
* Universita |
* Universita |
||
* Konečnost |
* Konečnost |
||
| + | |||
| + | ==Tabulka uzavřenosti== |
||
| + | {| class="wikitable" |
||
| + | |+ align="top"|Closure properties of language families (<math>L_1</math> Op <math>L_2</math> where both <math>L_1</math> and <math>L_2</math> are in the language family given by the column). After Hopcroft and Ullman. |
||
| + | |- |
||
| + | ! Operation |
||
| + | ! |
||
| + | ! Regular |
||
| + | ! [[Deterministic context-free language|DCFL]] |
||
| + | ! [[Context free language|CFL]] |
||
| + | ! [[Indexed language|IND]] |
||
| + | ! [[Context sensitive language|CSL]] |
||
| + | ! [[Recursive language|recursive]] |
||
| + | ! [[Recursively enumerable language|RE]] |
||
| + | |- |
||
| + | |[[Union (set theory)|Union]] |
||
| + | | <math>\{w | w \in L_1 \lor w \in L_2\} </math> |
||
| + | | Yes |
||
| + | | No |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | |- |
||
| + | |[[Intersection (set theory)|Intersection]] |
||
| + | | <math>\{w | w \in L_1 \land w \in L_2\}</math> |
||
| + | | Yes |
||
| + | | No |
||
| + | | No |
||
| + | | No |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | |- |
||
| + | |[[Complement (set theory)|Complement]] |
||
| + | | <math>\{w | w \not\in L_1\}</math> |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | No |
||
| + | | No |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | No |
||
| + | |- |
||
| + | |[[Concatenation]] |
||
| + | | <math>L_1\cdot L_2 = \{w\cdot z | w \in L_1 \land z \in L_2\}</math> |
||
| + | | Yes |
||
| + | | No |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | |- |
||
| + | |Kleene star |
||
| + | | <math>L_1^{*} = \{\epsilon\} \cup \{w \cdot z | w \in L_1 \land z \in L_1^{*}\}</math> |
||
| + | | Yes |
||
| + | | No |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | |- |
||
| + | |Homomorphism |
||
| + | | |
||
| + | | Yes |
||
| + | | No |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | No |
||
| + | | No |
||
| + | | Yes |
||
| + | |- |
||
| + | |e-free Homomorphism |
||
| + | | |
||
| + | | Yes |
||
| + | | No |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | |- |
||
| + | |Substitution |
||
| + | | |
||
| + | | Yes |
||
| + | | No |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | No |
||
| + | | Yes |
||
| + | |- |
||
| + | |Inverse Homomorphism |
||
| + | | |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | |- |
||
| + | |Reverse |
||
| + | | <math>\{w^R | w \in L\} </math> |
||
| + | | Yes |
||
| + | | No |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | |- |
||
| + | |Intersection with a [[regular language]] |
||
| + | | <math>\{w | w \in L_1 \land w \in R\}, R \text{ regular}</math> |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | <!-- |
||
| + | |- |
||
| + | |Min |
||
| + | | |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | No |
||
| + | | ??? |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | |- |
||
| + | |Max |
||
| + | | |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | No |
||
| + | | ??? |
||
| + | | No |
||
| + | | No |
||
| + | | No |
||
| + | |- |
||
| + | |Init |
||
| + | | |
||
| + | | Yes |
||
| + | | No |
||
| + | | Yes |
||
| + | | ??? |
||
| + | | No |
||
| + | | No |
||
| + | | Yes |
||
| + | |- |
||
| + | |Cycle |
||
| + | | |
||
| + | | Yes |
||
| + | | No |
||
| + | | Yes |
||
| + | | ??? |
||
| + | | Yes |
||
| + | | Yes |
||
| + | | Yes |
||
| + | |- |
||
| + | |Shuffle |
||
| + | | |
||
| + | | Yes |
||
| + | | ??? |
||
| + | | Yes |
||
| + | | ??? |
||
| + | | ??? |
||
| + | | ??? |
||
| + | | Yes |
||
| + | |- |
||
| + | |Perfect Shuffle |
||
| + | | |
||
| + | | Yes |
||
| + | | ??? |
||
| + | | ??? |
||
| + | | ??? |
||
| + | | ??? |
||
| + | | ??? |
||
| + | | Yes |
||
| + | --> |
||
| + | |} |
||
===Bezkontextové jazyky=== |
===Bezkontextové jazyky=== |
||
Verze z 29. 1. 2012, 01:11
Obsah |
Regulární jazyky
Uzávěrové vlastnosti regulárních jazyků:
- Sjednocení
- Průnik
- Konkatenace
- Komplement
- Substituce
- Morfismus
- Iterace
- Pozitivní iterace
- Rozdíl
- Zrcadlení
Rozhodnutelné problémy:
- Příslušnost jazyka
- Prázdnost
- Ekvivalence
- Inkluze
- Universita
- Konečnost
Tabulka uzavřenosti
| Operation | Regular | DCFL | CFL | IND | CSL | recursive | RE | |
|---|---|---|---|---|---|---|---|---|
| Union | w \in L_1 \lor w \in L_2\} </math> | Yes | No | Yes | Yes | Yes | Yes | Yes |
| Intersection | w \in L_1 \land w \in L_2\}</math> | Yes | No | No | No | Yes | Yes | Yes |
| Complement | w \not\in L_1\}</math> | Yes | Yes | No | No | Yes | Yes | No |
| Concatenation | w \in L_1 \land z \in L_2\}</math> | Yes | No | Yes | Yes | Yes | Yes | Yes |
| Kleene star | w \in L_1 \land z \in L_1^{*}\}</math> | Yes | No | Yes | Yes | Yes | Yes | Yes |
| Homomorphism | Yes | No | Yes | Yes | No | No | Yes | |
| e-free Homomorphism | Yes | No | Yes | Yes | Yes | Yes | Yes | |
| Substitution | Yes | No | Yes | Yes | Yes | No | Yes | |
| Inverse Homomorphism | Yes | Yes | Yes | Yes | Yes | Yes | Yes | |
| Reverse | w \in L\} </math> | Yes | No | Yes | Yes | Yes | Yes | Yes |
| Intersection with a regular language | w \in L_1 \land w \in R\}, R \text{ regular}</math> | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Bezkontextové jazyky
a k jazyku patřičná gramatika: context-free grammar (CFG)
Uzávěrové vlastnosti bezkontextové jazyky
- Sjednocení
- Konkatenace
- Substituce
- Morfismus
- Iteraci
- Pozitivní iteraci
- Zrcadlení
Kontextové jazyky
k jazyk generuje kontextová gramatika context-sensitive grammar (CSG)
Rekurzivně spočetný jazyk
Někdy taky zvané Jazyky rekurzívně vyčíslitelné a jazyky rekurzívní
- jazyky rekurzívně vyčíslitelné - zastaví pouze pro řětězec jazyku, který je schopen příjmout $ w \in L $
- jazyky rekurzívní - pro úplný Turingův stroj (pro každý vstup se zastaví)
Jazyky mimo typ 0
Mezi tyto jazyky patří například co-HP, co-MP
- Problém zastavení (halt problem)
- Problém náležitosti (membership problem)
- Postův korespondenční problém
- SAT problem